
iTSMAIT
The Innovative Transportation Simulator

by MAIT international
User’s guide

(Version its-0.51)

by Jörg Schweizer, MAIT international
Email: info@MAITint.org
URL: www.MAITint.org

July 17, 2007

Preface

This is a guide to the iTSMAITsoftware package.

LINKS FOR DOWNLOADING ARE PROVIDED IN THE
INSTALLATION SECTION

Look under the subsections that correspond to your operating system. Goto Sec. 2.2 for
Windows, NT, XP etc. and Sec. 2.3 for Linux and UNIXEs in general.

Although the design and running the simulation of a PRT/GRT network appears
straight forward, you can save a lot of time reading at least Sec 3!!.

Copyright statements

The its-0.51 software comes with absolutely no guarantee. MAIT international e.V.
takes no responsibility for the results its-0.51 produces and for any direct or indirect
damage it may cause.

Any direct or indirect commercial use (including consult and commercialized modifica-
tions of the code), requires a written agreement with MAIT international e.V., Germany.

Customized PRT/AGV/GRT simulation and analyzes plug-in modules can be re-
quested, please contact info@MAITint.org.

1

Contents

1 Introduction 3
1.1 What is iTSMAIT? . 3
1.2 Who should use iTSMAIT? . 4
1.3 Currently implemented features . 4

2 Installation and Download locations 6
2.1 System requirements . 6
2.2 Installation for MS Windows . 6

2.2.1 Instructions if open source packages are not installed 6
2.2.2 Open source packages are already installed 7
2.2.3 Installation of PyOpenGL . 7

2.3 Installation for Linux . 8
2.3.1 Installing iTSMAIT . 8
2.3.2 Installing/upgrading Python and Tkinter 9
2.3.3 Installing Python Numeric . 10
2.3.4 Installation of PyOpenGL . 10

3 Short Tutorials 10
3.1 Opening, starting and viewing simulation files 11
3.2 Network evaluation . 12
3.3 Designing an automated transport network 14
3.4 Graphics export and printing of canvas . 24

3.4.1 Postscript(R) Export . 24
3.4.2 Postscript(R) snapshot . 24
3.4.3 Screen-shots . 24

4 Advanced topics 25
4.1 Add users according to a predefined origin-to-destination matrix 25
4.2 Scripting . 27
4.3 The command-line mode . 27
4.4 How to simulate failures . 28
4.5 3D OpenGL monitor . 29

5 Principles of operation 30
5.1 Simulation objects, modules and their functions 31
5.2 Logistics and tasks . 33
5.3 Local vehicle control . 33

6 Bugs 35

7 Release notes for version its-0.51 36

8 Features for future releases 37

2

1 Introduction

1.1 What is iTS MAIT?

The innovative Transport Simulator by MAIT international e.V. is an easy-to-use micro-
simulator software, intended to simulate and evaluate a set of “innovative transportation
systems”. The software has been developed according to the MAIT system specifica-
tions, and software specifications, presented at the MAIT Meeting 2001, Loughborough,
UK. its-0.51 also satisfies the specifications for the PRT simulation software articulated
by the EUNITRANS group during the Automated People Mover conference APM’99,
Copenhagen, Denmark.

Even though the ultimate intention for this software is the simulation of a complete
MAIT system, its current use is focused on PRT or AGV systems.

Essentially, the software predicts performance and cost figures of a specified
system. The input data will include the network topology and assumed demand-patterns,
maximum accelerations, line-speed, boarding-times, component-costs, etc. Output data
will include waiting times, journey times, running costs and capital costs.

The performance-relevant technologies implemented are

• a novel version of a vehicle follower control algorithm. This control system is thought
to allow close-to-physically achievable results (see also the discussion under “Carri-
ers” in Sec. 5.1).

• Acceleration at stops, diverge and merge behavior.

• Boarding behavior at stops. Currently are two modes implemented:

– Synchronous mode, where the stop is divided into a loading and unloading
area.

– Asynchronous mode, where users can queue up at all berth of the stop and
enter the next available vehicle.

• Shortest estimated travel-time routing. (See Sec. 1.3 under logistics.) Consider-
able higher throughputs in high-density traffic operation are expected from a global
logistic operation system, which is not yet implemented.

The software has been designed to obtain a holistic view of the simulated transporta-
tion system. For this reason it covers (or will cover) a variety of system aspects such
as:

• Network design and planning, i.e traffic flow/ traveling speed/ waiting times etc.
for a given network layout and origin-destination demand patterns. (See scheme of
Fig. 1.)

• Cost- and performance analysis i.e prediction of passenger km, vehicle usage, ex-
pected investment and operating&maintenance costs, economy of scale, etc.

• Support for technological development of vehicles and infrastructure i.e to incorpo-
rate upgrades to modularization and interfaces, control systems, server-networks,
logistics, management systems, etc.

3

• Support for implementation, test and integration, so that simulated hardware mod-
ules, such as vehicles and track, can be replaced by their real physical systems, while
the logistics/management modules of the software can continue to control the real
network— with almost no modifications.

• Support for geometrical design, study of visual impact and promotion i.e to pro-
vide 3D output of simulated network.A simple, but realtime 3D-viewer has been
implemented.

For currently implemented features see Sec 1.3.

analyses of
target area

network evaluationnetwork (re)design

Costs
Performance

Figure 1: Network design cycle.

1.2 Who should use iTS MAIT?

Because the simulator covers a large number of development and implementation issues,
it is of interest to:

• system developers,

• manufacturers,

• transport experts, consultants, town planners, architects,

• potential operators and

• anybody who dreams of a better way to transport people and goods.

1.3 Currently implemented features

• Easy to use transportation network editor: Track elements, vehicles and users can
be selected from a library and placed and edited on the canvas with a graphical
2D network representation. Scanned maps of the target region can be used as
background images. The number of different network components (track elements,
vehicle-types, users) is still limited but is expected to grow rapidly. Anyway, new
track elements can be easily created by copying and editing library text-files.

• Vehicle dynamics: The vehicles are using a vehicle-follower control algorithm.
Speed-limits, maximum comfort/emergency/safety acceleration, brake actuation time
are respected. Jerk is not simulated explicitly, but jerk limits can be introduced im-
plicitly such that the average vehicle distances are represented correctly—as if jerks

4

were simulated. All parameters can be modified via GUI interfaces (in this case
called “control-panels”). For more information on control issues, see Sec. 5.1 under
carriers and Sec. 5.3.

• Passenger-behavior: Currently there are two types of passengers implemented:

– generic user: this user is making one trip during the simulation, where the
origin and destination stop are indirectly determined by a origin-to-destination
matrix. See Sec. 4.1 on how to use this feature.

– test-driver: This user makes one random trip after another. He has been
mainly created for test purposes.

• Logistics: Currently three management modules are implemented:

– Passenger management, which is the only one that interfaces directly with
passengers.

– Carrier management, allocates a vehicle to the passenger management. Opti-
mized empty vehicle management.

– Track management, knows the network topology, instructs all diverge points
to direct the vehicle on the fastest way to the desired destination.

For more information, see management objects in Sec. 5.1 and Sec. 5.2. .

• Analysis and validation: The current data about each module, i.e vehicles, users,
track, managements, can be displayed via control-panels. The data contains module-
dependent information about

– Performance, e.g throughput, average speed, waiting times, traveled passenger
km, etc.

– Economics, e.g initial investment, annual costs, trip costs, etc. and Impor-
tantly: Economy of scale. Costs, that depend on the quantity (or length)
of modules can be edited in a quantity/prices table. The software will then
automatically compute the price, dependent on the size of the network, number
of vehicles, etc.

– important parameters, such as accelerations, line-speed, etc. Most of these
parameters can be interactively changed.

• Export results: the most significant data of the current simulation, i.e parameters,
performance and costs, can be exported as a tab-separated text file, which is easily
imported into all spread-sheet applications such as Excel, kspread, star-office or
Gnumeric.

• Save and load: the current state of the simulated network, including vehicles, users
and managements, can be saved at any time into a simulation file. This simulation
file can be reloaded and the simulation continued from the state when the network
was saved.

5

• Command-line mode: the simulation of a previously edited and saved network can
be launched also without graphics. In the Command-line mode simulation times
can be reduced considerably. It also allows to run the simulation within scripts or
as a batch process. Read more in Sec 4.3.

• Scripting: the simulation of a previously edited and saved network can be used in
scripts. Parameterized vehicles and passengers can be added within the script and
results can be saved automatically, see Sec 4.2.

2 Installation and Download locations

This section explains the installation for different operating systems (OSs). As iTSMAITis
heavily based on the open source software packages Python2 (http://www.python.org),
Python Numeric and Tcl/Tk (http://dev.scriptics.com/), it is necessary to install those
packages before iTSMAITcan be launched1.

DIRECT LINKS FOR DOWNLOADING ALL REQUIRED SOFTWARE
ARE PROVIDED IN THE SUBSECTION THAT CORRESPOND TO YOUR
OPERATING SYSTEM!. For windows, there is just one zipped file to download,
which contains all the software needed!

2.1 System requirements

As system requirement, an Intel Processor with at least 500MHz (or equivalent), 64Mb
of RAM and 15MB of disk space is recommended. The simulator can also be used with
less powerful computers. However, in the graphic mode, vehicles movement becomes very
slow and jerky. However, a previously edited network can be simulated in command-line
mode, which is significantly faster.

2.2 Installation for MS Windows

All free packages run on 95, 98, NT, 2000, XP and Vista.

2.2.1 Instructions if open source packages are not installed

Since code.enthought.com offers a complete Python suit for windows, including all re-
quired packages, it is easiest to install just this software (instead of the individual pack-
ages):

1. Download the latest version at http://code.enthought.com/enthon/.

2. Double-click on the downloaded file and follow instructions.

Now you are ready to install the iTSMAITsoftware, (see Sec. 2.2.2).

1Even though the install instructions and downloads are only given for Linux and MS windows, the
open source packages can be downloaded from the respective home-pages and compiled on almost all
known platforms. For Macintosh, all binaries are available except for the Python Numeric package, but
maybe somebody compiled it already, check the web-site www.cwi.nl/˜ jack/macpython.html.

6

2.2.2 Open source packages are already installed

Use these instructions if you have Python 2.3.4 and Python Numeric-23.1 or greater
installed on your system (or followed installation in Sec. 2.2.1).

1. Download
http://www.trasporti.ing.unibo.it/personale/schweizer/mait/projects/sim/downloads/its-
0.51 -win.zip into a directory of your choice i.e. My Documents \its. On this level,
a directory (containing all simulation files) with the name its-0.51 will be created.

2. Rightclick on file My Documents \its and select: extract all...

3. Open the its-0.51 directory and start the simulator by clicking on the file its (with
the snake icon). If you can see the main window of the simulator (see Fig. 2), you
are ready to proceed with the tutorials in Sec. 3.

Remark:
(ii): If you have already used a previous version of iTSMAITyou may have also pre-

vious version of Python and Numeric. These versions should work as well. However,
Python 2.3.4 has been a major bug-fix release and runs indeed much more stable and also
faster. So if you intend to make large simulations with several thousands of users you are
encouraged to reinstall all packages. Then follow the instructions of Sec. 2.2.1.

(ii): Several iTSMAIT-version can coexist in separate directory trees, always named by
its version. Executing the simulator of one or the other version is done by diving into the
respective directory and clicking on the file its. The simulation files created be an older
version (usually in the “projects” sub-folder), can be copied into the “projects” sub-folder
of the newer version. Simulation files created by an older version, will be automatically
upgraded when opened with the newer version of the simulator.

2.2.3 Installation of PyOpenGL

In order to view your network in 3D and real-time, you need to have the PyOpenGl-
package installed (!! Does not work with Vista - sorry):

1. install one more Python module: download exactly this file PyOpenGL-2.0.1.09.py2.3-
numpy23.exe (for Python 2.3) or PyOpenGL-2.0.1.09.py2.4-numpy23.exe (for Python
2.4). from
http://sourceforge.net/project/showfiles.php?group_id=5988&package_id=6035

and install this self-extracting file by double-clicking and following instructions.

2. Then you need the Microsoft’s OpenGL driver, which is no Open Source but you
get the binary for free from Microsoft or an open-source clone at
http://www.trasporti.ing.unibo.it/personale/schweizer/mait/projects/sim/downloads/glut-
3.7.6-bin.zip
Unzip the file, and browse into the directory. You will see a file called glut32.dll. Just
copy this dll-file in the main directory of the previously installed OpenGL Python
package which is usually in C:\ Programs\Python23\Lib\Site Packages\OpenGL.

7

2.3 Installation for Linux

Linux installation is in the best case very easy because Python is part of most Linux
distributions. If you have all the packages or if you have installed a previous version of
iTSMAITyou can directly go to Sec. 2.3.1.

However, for the same reason it can get messy if you have some packages installed,
other not, or if you are using older packages. Therefore, first check out whether the above
mentioned open source packages are already installed on your system:

1. Open a terminal and type:python, or python2. If you get an error message or if
you have a version lower than 2.2 then you need to install/upgrade python and all
other packages. Go to Sec. 2.3.2.

2. If you have a valid version of python then type: import Tkinter behind the python
prompt. If this produces an error message, you need to install TKinter.Go to
Sec. 2.3.2.

3. If you have the right version of python then type import Numeric after the python
prompt. If this produces an error message, you need to install Python Numeric. Go
to Sec. 2.3.3.

Some quick installation method for python and the required packages are briefly described
below. If you have all packages you can continue with Sec. 2.3.1.

2.3.1 Installing iTS MAIT

Once all packages are in place the installation of iTSMAITis easy:

1. Download
http://www.trasporti.ing.unibo.it/personale/schweizer/mait/projects/sim/downloads/its-
0.51 .zip.

2. place file its-0.51 .zip in a directory of your choice. Open a Terminal, open this
directory and unpack zip archive with $ unzip -a its-0.51 .zip.

3. A new subdirectory called “its-0.51 ” has been created; open it and start the simu-
lator with$ python its.py. For command line option type $ python its.py -h.
If you see the main window of the simulator (see Fig. 2) then the installation is
successfully terminated. Otherwise, check out the messages on the terminal to see
whether there is a package missing.

Remark 1: If you intend to install iTSMAITfor all users then you should put the
entire its-0.51 directory in $PYTHONHOME/site-packages/. Read the documentation on
how to make the new package visible to the Python interpreter.

Remark 2: If you intend do more Python programming, I recommend to use the
Python text editor (and development tool) IDLE (which you can find in the Python
installation tree if it is installed). There are also syntax highlighting packages for the
Emacs and FTE editors. All tools can be found at www.python.org.

8

2.3.2 Installing/upgrading Python and Tkinter

What you need is the version Python 2.2 or higher (2.3 recommended) with Tkinter
support. There are different methods to install/upgrade which are more or less easy,
dependent on your present system configuration.

• Installing with CDs of distribution: This is easiest. Since Python and Tkinter are
part of any Linux distribution that I know of. Take these CDs and install the
following packages in this sequence (if not already installed):

1. python-2.3.3-6

2. python-devel-2.3.3-6 (only if you have no RPM binary for Numeric)

3. tcl-8.4.5-7 (required for Tkinter)

4. tk-8.4.5-8 (required for Tkinter)

5. tix-8.1.4-96.1 (required for Tkinter)

6. tkinter-2.3.3-6

This list is made off the Fedora Core 2 distribution. In other distributions version
names may slightly differ, but the important thing is that they are consistent and
satisfy internal dependencies.

RPM package installation for Linux newcomers: login as root, open a terminal, cd
into the RPM-directory of the distribution CD (usually: $ cd /mnt/cdrom/RPMS)
and type:
rpm -i packagename.rpm

Alternatively use your favorite graphical RPM management application which is
usually somewhere in the applications launch-bar under System tools, Admin tools
or similar).

• Upgrading: If you have Python version >= 2.2 the current iTSMAITversion should
work. However, Python 2.3 has been a major bug-fix release and runs indeed much
more stable and also faster (up to 30% on some benchmarks). So if you intend
to make large simulations with several thousands of users you are encouraged to
upgrade Python. Several Python versions can actually coexist on your system, you
just need to make sure which one is called when you type $ python or click on a
python file.

If you have an RPM based Linux system, make sure to get the upgrade RPMs for
your specific distribution, otherwise you will get crazy with package dependencies.
You can find upgrades on one of the following sites:
http://www.rpmfind.net/linux/RPM/(all major distributions),
http://freshrpms.net/packages/(RedHat oriented),
http://dag.wieers.com/home-made/apt/(RedHat oriented).
Other distributions like Debian or Gentoo do maintain their own database with
upgrades, have a look at their home page.

• Compile from source: Compiled code usually runs faster than binaries because
it will be compiled for your processor and not for the (lowest) standard proces-
sor i386. Download the source code for Python 2.3.4 from the download page at

9

www.python.org/ftp/python/2.3.4/Python-2.3.4.tgz and compile. Even though the
compilation process is well done and straight forward to use, people who never
compiled a source package may find it difficult to go through all steps.

2.3.3 Installing Python Numeric

If you have Python up and running, choose one of these methods to get python-numeric-
23.1 installed:

• RPMs: This is easiest, but recommended ONLY if you find the package python-
numeric-23.1-xxxx.rpm for your particular Linux distribution. Have a look at the fol-
lowing mirrors: www.rpmfind.net/linux/RPM/(all major distributions), http://freshrpms.net/packages/(RedHat
oriented), http://dag.wieers.com/home-made/apt/(RedHat oriented) Other distri-
butions like Debian or Gentoo do maintain their own database with upgrades. Just
have a look at the respective home page.

• Compile from source: This is actually the “Python way” to install Python modules,
because it is platform independent.

1. First make sure you have the Python header files installed, which should be
the case when you have compiled Python from source. Otherwise,install the
RPM package python-devel-2.3.x-x from your Linux distribution.

2. Download source Numeric-23.1.zip at
http://sourceforge.net/projects/numpy and unzip.

3. Open terminal as root in the unzipped directory Numeric-23.1 and type:
python setup.py install

If you have problems consult the Python Numeric homepage (http://www.pfdubois.com/numpy/)

2.3.4 Installation of PyOpenGL

In order to view your network in 3D and real-time, you need to have the PyOpenGL-2.0
(or newer) installed:

• PyOpenGL is often available as binary RPM or Debian package for you Linux distri-
bution. Sometime the package is called “python-opengl”. Check out the respective
repositories, see Sec. 2.3.3

• Download and compile the source from
http://sourceforge.net/project/showfiles.php?group_id=5988&package_id=6035

3 Short Tutorials

Go through these tutorials if you are using the simulator for the first time, they help you
to quickly get a simulation designed and running. For professional studies the advanced
topics in Sec. 4 are highly recommended.

Start up iTSMAITin GUI mode (GUI= Graphical user interface) by typing python

its.py behind the terminal prompt or by double clicking on the its-snake in your file

10

browser. Then you should see the empty main window as shown in Fig. 2. Now you can
continue with one of the short tutorials below.

Figure 2: iTSMAITMain window

3.1 Opening, starting and viewing simulation files

Choose from the main menu File / Open. You will always be asked whether you want
to save the present simulation. Press “NO” if there is no simulation or if you have just
saved it. Select the simulation file fiera users.its and press the “OK” button. After
the transportation network has appeared in the main window (similar to Fig. 3), choose
from the main menu Simulation / Start. The vehicles and users should now start moving.
Stop the simulation with menu Simulation / Stop. You can continue the simulation with
Simulation / Continue. If you select again Simulation / Start the simulation will apparently
continue, but time and all statistical data will be set to zero.

There is also a step-by-step simulation option: click somewhere in the canvas and
press the return key. For each return-key hit, the simulator will advance 500ms. Before

11

continuing the simulation in normal mode, you need to set the End of simulation time

to a desired value by selecting Simulation / Parameters.

Figure 3: The simulation fiera users.its. The brown dots beside the off-line stop are
people (users) who will have a ride. The vehicles are the yellow rectangles.

Use the scroll-bars or cursor-keys to scroll the viewing area of the canvas. Zoom in
and out with the PgDown and PgUp buttons.Attention: for large maps, enlargements are
computationally intensive and require a huge amount of memory!! More zoom options
are available on the View Menu. Choose View / indicate ghosts to visualize how vehicles
are merged and de-merged. Attention, this option will slow down the display.

Network evaluation methods are explained in Sec. 3.2, for Network creation and editing
see Sec. 3.3.

3.2 Network evaluation

Open a complete simulation file (including vehicles and users as demonstrated in Sec. 3.1)
and simulate it for at least 10 minutes (see status bar below canvas). There are currently

12

Figure 4: The Performance page of the control-panel of a track element.

the following methods available to evaluate the current state of the simulation:

The Control-panel is an interactive graphical user interface which displays various in-
formation about a selected module (see Fig. 4 with an example of a track element).
The information are ordered by subjects (for example performance, costs, etc.) and
presented on different pages which can be chosen on the top border of the control-
panel window. Many fields and buttons are interactive, values can be changed by:

• clicking in the field,

• modifying value with keyboard and

• pressing the RETURN or ENTER button.

There are many possibilities to open control-panels:

• Select Edit/ Module/ Control-panel and click on a module (user, track-element)
within the canvas.

13

• Select Edit / Browse.... This will open a window with a list of all simula-
tion objects, also the “hidden objects” (for example managements), which are
not visible on the canvas. Select an object and press the Control-panel but-
ton. Some objects contain a number of individual modules of the same type
(for example the object base.user.test driver contains all users of the type
“test-driver”). These modules are displayed on the right. In this case, select
one of the modules and press the Control-panel button. A double click has the
same effect as pressing the Control-panel button.

• The control-panel can also be opened from within other control-panels if there
is a list-box with module names. For example, there is a list of vehicles in
the Section page of each track element which are currently on the selected
section (select a section in the section list to show vehicles). Click directly on
the vehicle ID to open the control-panel of the respective vehicle.

Export results allows to write structured information about the state of the simulation
into a file. Currently the data is written in table-form using a tab-separated text
format. The resulting file can be directly imported into text processing documents
or spread sheet applications.

To export results, select Tools / Export results... from the main menu, insert a file
name with extension (for example .txt) in the upcoming dialog-box and press OK.
When imported with the spread-sheet application kspread (KDE e.V) the data looks
as shown in Fig. 5.

Export canvas: see Sec. 3.4.

3.3 Designing an automated transport network

These are step-by-step instructions on how to design a network from scratch. It is highly
recommended to follow these instructions at least for the first time you create a
network. Keep in mind that this is not a fully-developed commercial software with all
the conveniences like undo, group, mark, copy, paste, etc. Furthermore, some parameters
cannot be changed in later design steps and need to be set at the beginning. However,
following the instructions below even larger networks can be rapidly and conveniently
designed, see also design sequence in Fig. 6:

1. Create a new simulation with File / New from the main menu.

2. Optionally, change currency in Simulation / Parameters (default is EUR). Confusing
results may occur when changing the currency later.

3. Optionally, put one or more scanned maps on the canvas: Select Edit/ Map/ Add...
from the main menu, select the graphic file with the desired map in the browser-
dialog window and press OK. You should see the map on the canvas, attached
to the pointer. Move map to the correct position and place it with a click. The
add-and-place operation can be repeated for any number of maps.

Note that iTSMAITis a micro-simulator, showing the movement of individual peo-
ple and vehicles. This means the map’s resolution must be high enough to show
structures such as individual houses or cars, which requires considerable memory

14

Figure 5: Example of file with exported results, when imported in a spread sheet (here
kspread from KDE e.V).

15

(a) (b)

(c) (d)

Figure 6: Example of a step-by-step network design.(a) Moving and placing background
maps. (b) Placing stops and other track element. (c) Closing the gaps with “flexible” track
elements. This design step is available in the its-0.51 distribution, just open simulation
file fiera track.its. (d) Track is “activated” and carriers as well as users have been
added to the stops. The simulation is now ready to run.

and processing time for map images. In order to obtain realistic results using maps,
please read carefully the following instructions:

• Scale the map to one pixel-per-meter (for example if you want to include a
5km2 large map than it must have 5000 × 5000 pixels = 25, 000, 000 pixels).
This scaling is not done by the simulator, it is required that you do this with a
graphics program before including it in the simulator. Note that the width of
vehicles, track and persons is slightly over-sized (roughly factor 1.3) in order
to improve visibility at 100% viewing scale.

• Save the map in GIF-format into the same directory as the simulation file,
default is its-0.51 /projects.

• Multiple background maps are recommended if the target area is not rect-

16

angular. Try to avoid “empty” map space as maps occupy a lot of memory,
disk-space and slow down zoom operations.
Hint:If you are designing a bigger network it may be useful to delete all maps
after designing the layout of the network and before running the simulation.
This will reduce the memory occupation and increase simulation speed (in par-
ticular zoom operations). However, keep a copy of the the simulation with the
maps in case you want to redesign/expand the network.

• The maps are not included into the simulation file (only their names are).
This saves you a lot of disk space but if you want to copy the simulation for a
friend, make sure to copy all map files as well and do not change their names
or location once they are included.

• Best suited are aerial or satellite photographs of the target area. Road maps
have the disadvantage that the streets are drawn wider than they are in reality.
Aerial photographs give also a more realistic impression when presenting a
demo-simulation.

4. For your convenience: Some menus have a dashed separator on the top (for example
Edit / Module). This means they can be torn-off and placed permanently anywhere
on the screen as permanent window. Just select this separator to transform the
menu into a window.

5. Add, adjust and connect track elements: Open first the Module browser with Edit/
Module/ Add.... The module browser, as shown in Fig. 7, has a group-pull down
menu and module selection dialog box. Choose track-elements at the group pull
down menu. Select a particular track element from the Modules selection box that
you want to add to the simulation. An example of a selected type is shown in
the preview window together with some additional text information. Note the little
circles on each extremity of track elements. An empty circle indicates an input node
(where vehicles enter), whereas a filled box marks an output node (where vehicles
leave).

Press the Select of the module-browser bottom and move pointer over canvas
(alternatively, double click on the module type). The selected track element should
now be attached to the pointer. As long as the track element is attached to the
pointer with one of its nodes, the following operations can be used:

• Press key “a” or shift-“a” to change the angle of the track element with respect
to its attachment point (currently in one degree steps).

• Press key “n” to cycle with the mouse pointer through the nodes. This becomes
important later on when the track element must be connected to other track
elements.

• Left click to place the track element on the canvas. When input node comes
close to an output node, or vice versa, the two track elements connect and the
circles disappear. Note that the newly attached element may change orienta-
tion in order to guarantee a continuation from the previous element. It is just
like the assembly of a model railway.

There is immediately another track element of the same type attached to the
pointer which you can place again.

17

Figure 7: The module browser. A selection panel for adding track-elements, vehicles and
users. To see this panel go Edit/ Module/ Add...

• Right click or press the ESC-key to get rid of the track element attached to the
pointer. Alternatively, you can click on a module in the selection box to pick
a different one. You can pick up again and manipulate the geometry of the
track element by selecting Edit/ Module/ Move and by clicking on the desired
element.

When creating the network, it is recommended to minimize the number of track
elements. This will considerably improve simulation speed. This means: use few
track elements and connect them by stretching their extremities. This step requires
a bit of experience. However, with the following hints one can rapidly build up a
network:

• Place first all stops. Maybe you have done some traffic demand analysis of the

18

target region and you know the rough position and capacity of the stops. Make
sure that the orientation (adjust with “a” and “A”) is right and input nodes
(open circles) and output nodes (filled circles) are at the desired extremities of
the stop.

• Place diverge and merges elements with curves, circular curves, and line ele-
ments wherever possible.

• Change radius and length of existing elements in order to cover the maximum
possible path:

– Go in move-mode by right-click when placing or by selecting the Edit/
Module/ Move menu.

– Click on the node you want to move or stretch.

– Move the mouse to change shape of track element.

– Left-click to complete operation.

Stretching can also be used to make connections, when a filled and empty node
are close enough together.

• WARNING: there is currently no design rule checker! You must make
sure that the entry sections of all merges are sufficiently long, this means length
greater than TBv+ 1

2ac
v2, where ac is maximum comfort deceleration, TB is the

brake actuation time and v the maximum line velocity.

The nominal line velocity is a property of the section and can be changed on the
control-panel’s Section-page. However, nominal line velocity is not maximum
line velocity. If the previous section has a higher nominal line velocity then you
must leave the vehicles additional space to reduce their speed to adapt to the
nominal line velocity of the merge section. Do never increase the line velocity
of stops, otherwise they are no more safe.

The accelerations are a property of carriers and can be changed on their control-
panel.

• Place diverges and merges with flexible extremities.

• Use again the move-mode to stretch the track elements and to close as many
gaps as possible by making connections. Pay again attention to the length of
the entry sections of merges.

• Close remaining gaps by placing and stretching flexible lines.

• An alternative to adding track elements one can “clone” existing elements by
selecting the Edit/ Modules/ Clone tool and by clicking on the track elements
to be cloned. This is similar to the copy/paste operation of text editing appli-
cations. The Edit/ Modules/ Delete tool allows to delete track-elements.

6. Optionally, configure track-elements:

• Select Edit/ Modules/ Control-panel and click on a track-element of the canvas.

• Click on the Sections page, and select an individual sections of the track-
element on the table of all sections. Change nominal line velocity for the
selected section. Do not forget to hit the RETURN or ENTER key after
editing a number in order to make the changes valid for the simulator.

19

Figure 8: The costs page of the control-panel of a track element.

Attention, if you want to changes velocities then it is absolutely required to
read the warnings of the previous design step, in particular concerning the
merge elements. It may happen that you must extend the entry section of a
merge when increasing the speed!!

• Click on the Costs page of the control-panel, as shown in Fig. 8. You see a list
of costs plus life-time and some other relevant quantities:

– Estim. initial extra costs = All initial investment costs which are not
proportional to the track length (extra poles and structures, elevators,
etc.). This cost item can be edited in a quantity/cost table by pressing
the Edit... button, see Fig. 9. The quantity is here the number of this
type of track element in the current network, which will be automatically
determined when calculating the costs.

– Estim. initial costs per meter = All initial investment costs proportional
to the track length (rails, beam-structure, poles, etc.). This cost item can
be edited in a quantity/cost table by pressing the Edit... button. The

20

Figure 9: Cost-table editor allows automatic economy of scale calculations for network.

quantity is here the length in meter of the total network.

– Estim. extra costs per year = All annual operating and maintenance costs
which are not proportional to the track length (control, cleaning, painting,
repair). This cost item can be edited in a quantity/cost table by pressing
the Edit... button. The quantity is here the number of this type of track
element in the network.

– Estim. costs per meter per year= All annual operating and maintenance
costs proportional to the track length (cleaning, painting, repair). This
cost item can be edited in a quantity/cost table by pressing the Edit...
button. The quantity is here the length in meter of the total network.

– Estim. initial costs = Estim. initial extra costs+Estim. initial costs per
meter × length of track-element. This cost item is a function of other costs
and cannot be edited.

– Estim. costs per year = Estim. extra costs per year+Estim. costs per
meter per year × length of track-element. This cost item is a function of
other costs and cannot be edited.

– The life time can be changed directly in the text box, but has currently
no further use.

Press the Apply-button to apply costs to the present track-element or the
“Apply costs to all modules of this type”-button to copy the costs to

21

all track-element of the same type that exist in the entire network.

• In case of stops, you can click on the Parameters page of the control-panel.
The following parameters can be modified:

– Name of the stop. By default the simulator gives unique numbers to the
stops. If you want to give names to stop, try to avoid whitespace! These
names may be compared later with the names in your origin-to-destination
demand pattern table and a stop-name with two space-characters is differ-
ent from a name with a single space-characters. You could use underscores
instead, use kings road for example instead of kings road

– Zone: You can also assign the stop to a so called “zone”. The concept
of zones is later used to add vehicles and users. For example 50 users or
vehicles can be distributed over all stops which are in the same zone. The
default zone of all stops is maintenance.

– Berths to be kept clear: This is the desired number of berth to be
kept clear for newly arriving vehicles. This means an empty vehicle will
not be diverted into the stop if the number of free berth is below the
number specified in this field. Default is that half of the berth must be
kept clear.

The above parameters can be changed at any design step, but it is recommended to
do it before starting the simulation. Otherwise the obtained simulation results are
produced with a changing set of system parameters.

7. Save track layout! You will definitely want to change your track later on. For this
reason it is a good idea to save this intermediate result now because after the next
steps it becomes increasingly difficult (and sometimes impossible) to remove vehicles
and users from the simulation in order to get back to the plain track. Therefore,
Select File / Save as... on the main menu and insert the name of the simulation. The
suggested name is mycity track.its, to indicate that this simulation file contains
track information only.

8. Activation of track elements: The activation of track elements is somehow similar to
switching on the real track after installation. To activate the track go to menu item
Edit/ Module/ Activate. Then click on the track element that you want to switch
on. Alternatively you can activate the entire network at once with Edit/ Module/
Activate all.

Note: Only track elements that are connected on all nodes can be activated. How-
ever, single section of a track element can be activated if both ends are connected.
Furthermore, only inactive track elements can be moved, stretched or deleted. For
inactivation go Edit/ Module/ Inactivate and click on the track elements to inactivate.

9. Add vehicles: click on module-browser and select Carriers (carrier is MAIT ter-
minology). You could double-click on a carrier type (currently only experim is
available), drag it over a stop on the canvas and click to place it into a berth.
However, a more effective method is to select a carrier and press the Add multiple

bottom. A dialog box will appear with the following options:

• Number of vehicles to be added

22

• The zone to where the vehicles are distributed. The default is everywhere.

• Maximum absolute comfort, emergency and failure acceleration rates.
The emergency and failure deceleration define the minimum achievable head-
way dependent on velocity. The headway in turn will ultimately limit line
capacity, see discussion in Sec. 5.3.

You can repeat this operation to place any amount of vehicles to stops in different
zones.

10. Optionally, edit costs of carriers: Select Edit / Browse..., and test.car.experim

in the simulation objects list. Click on any particular carrier in the Modules list
and press the Show control-panel-button. Click on the Costs page of the control-
panel. You will see a lists of costs plus life-time and some other relevant quantities:

• Estim. initial costs = All initial investment costs This cost item can be edited
in a quantity/cost table by pressing the Edit... button. The quantity is here
the number of this carrier type in the current network.

• Estim. costs per year= All annual operating and maintenance costs (control,
cleaning, painting, repair).This cost item can be edited in a quantity/cost table
by pressing the Edit... button. The quantity is here the number of this carrier
type in the current network.

Press the Apply-button to apply costs to the present carrier or the “Apply costs to

all modules of this type”-button to copy the costs to all carriers of the same
type that exist in the entire network.

11. It is recommended to save the state of the simulation file after adding vehicles with
the name mycity cars.its

12. Add users: click on module-browser window and select Users. For this exercise
we will select the user “test driver”. Double-click on test driver, drag him/her
close to a stop on the canvas and click to place. However, a more effective method
is to select the test driver in the browser window with a single click and press the
Add multiple bottom. A dialog box will appear with the following options:

• Number of users to be added

• The zone to where the users are distributed. The default is everywhere.

• The boarding time, including door opening entering the vehicle and door clos-
ing.

• The exit time. Same as boarding time, but passenger leaves the vehicle.

You can repeat this operation to place any amount of test drivers to stops in different
zones.

13. Optionally, change End of simulation time in Simulation / Parameters (default is
3600s = 1h).

14. It is recommended to save the state of the simulation file after adding users with
the name mycity users.its

15. Run simulation with Simulation / Start.

23

3.4 Graphics export and printing of canvas

Unfortunately there is currently no platform-independent printing scheme for graphics
implemented. However, there are two methods to export the transport-network in a
printable graphics format: Postscript snapshot and screen-shots.

3.4.1 Postscript(R) Export

Postscript(R), is the Adobe(R) file-format for printers. You may be able to drag and
drop a postscript file directly into a postscript compatible printer symbol, on almost all
Unix systems you simply type at the prompt: lp postscriptfile.ps and the file will be
printed directly to the postscript line printer or automatically converted to a proprietary
format and then printed.

Postscript files can also be viewed and edited. There is commercial software, such as
Adobe Acrobat Distiller/Reader and Photoshop. The most widespread free software is
Ghostview and the Gimp. Windows users can download the free software at
http://www.cs.wisc.edu/~ghost/gsview/index.htm

3.4.2 Postscript(R) snapshot

To make postscript snapshots, simple select Tools / Make PS snapshots. If you now run the
simulation, a snapshot will be made every 500ms by default. The files will be saved in the
current directory under the name(s): mysimfile shot001.ps, mysimfile shot002.ps,
mysimfile shot003.ps, . . .

Note: the PS snapshots cover only the area of the canvas that you actually see in the
window on the screen (but without window borders). If you want the whole network, you
may want to zoom out first.

3.4.3 Screen-shots

Screen-shots are probably the quickest and simples way to export graphics:

MS windows: 1. Maximize window with canvas.

2. Press the “Print Screen”-key

3. Open MS Paint or other MS text/graphics applications

4. Select Edit / Paste, or in MS word Edit / Paste Special....

5. Optionally, edit graphics (cut off windows frame and menu, resize, compress,
etc.)

Linux: 1. Maximize window with canvas.

2. Take a snapshot using your favorite snap-shooter (for example ksnapshot that
comes with the KDE desktop) and save window as graphics file.

3. Optionally, edit graphics with gimp (cut off windows frame and menu, resize,
compress, etc.)

24

4 Advanced topics

In contrast with the tutorials, the advanced topics will explain how to use the simulator
to a fuller extend. Many topics are very useful for professional studies. The Principles of
operation in Sec. 5.1 are not fundamental for the usage of the simulator, but may help to
get a deeper understanding.

4.1 Add users according to a predefined origin-to-destination
matrix

The evaluation of any planned transportation system starts usually with an origin-to-
destination matrix (ODM). From this matrix we know how many passengers want to
travel from and to a specific place in a certain time window (usually during peak hours).
There are planning-methods that allow to get from the ODM (together with other data
on street-layouts and geographical data) to a transportation-network layout with nodes,
links and stations, where the links and station must have certain capacities in order to
cope with the expected flow of vehicles and passengers. However, note that PRT/GRT
networks have some special properties such as off-line stops. Usually the first layout is
based on static flow averages, which is a crude, but useful assumption.

In any case, one would start with an initial topology and then verify with the micro-
simulator whether the respective performance satisfies our expectations. If not, bottle-
nags need to be identified and the topology modified accordingly.

Here, we explain how to use iTSMAITfor this iterative optimization process, in par-
ticular on how to include a predefined ODM in a network layout.

1. Design of initial network: In order to simulate a transportation network with a
specific ODM, you obviously need to design the network first. Follow the steps
in Sec. 3.3 up to the point where you have saved the simulation with carriers, for
example under the name mycity cars.its.

2. Prepare file with the ODM data: The required ODM file is an ordinary text-file
with a comma-separated table:

,SN1,SN2,SN3,SN4,SN5,SN6,SN7,SN8

SN1,P11,P12,P13,P14,P15,P16,P17,P18

SN2,P21,P22,P23,P24,P25,P26,P27,P28

SN3,P31,P32,P33,P34,P35,P36,P37,P38

SN4,P41,P42,P43,P44,P45,P46,P47,P48

SN5,P51,P52,P53,P54,P55,P56,P57,P58

SN6,P61,P62,P63,P64,P65,P66,P67,P68

SN7,P71,P72,P73,P74,P75,P76,P77,P78

SN8,P81,P82,P83,P84,P85,P86,P87,P88

In this case we have 8 stops, with names SN1. . .SN8. These are the stop names
that you have inserted at the control-panel of each stop. If not, do so by selecting
Edit/ Module/ Control-panel; clicking on the stop on the canvas you want to give a
name; choose the Parameters Tab at the control-panel, fill in the Name field AND

25

HIT THE RETURN KEY to take over the value. 2 By default the stop-names are
unique numbers (1, 2, 3, . . .). During the simulation Pmn passengers will travel from
stop with name SNm to the stop with name SNn. You can find an example ODM file
under projects/fiera odm.txt

You may have the ODM data already available in electronic form, in a spreadsheet
for example. In this case, just save it as comma separated text file and you are
done.

3. Add users to simulation: Now we want to add the users to the already existing
simulation, containing track and vehicles. Open the simulation into iTSMAIT(for
example fiera cars.its). Open the module browser with Edit/ Module/ Add...
and select group “users”. Select the “generic” user-type and click on the Add

multiple bottom. Then a dialog window shows up with the following options:

File with O/D matrix Insert path of ODM file or select the file using the file
browser.

Start trip earliest,Start trip latest These two fields specify the time-interval in
seconds when the trip of the users must start. The actual start of the trip of
a particular user will be picket from this interval (using uniform distribution).

Minimum boarding time, Maximum boarding time These two fields specify
the boarding time-interval. The actual boarding time of a particular user will
be picket from this interval (using uniform distribution).

Minimum exit time, Maximum exit time These two fields specify the exit time-
interval. The actual exit time of a particular user will be picket from this
interval (using uniform distribution).

Aura : This is simply the diameter of the dot of the 2D representation of this
user-type.

Color : By clicking on “Pick...” you can select the color of the 2D representation
of this user type.

Load user-profile, Save user-profile : You can save and reload the above pa-
rameters in as user-profile.

4. Press “OK”.

With the above user-parameters you can simulate different user-types, as for example
single adults, passengers with luggage or a user-group such as a family. In the latter case
one user stands for the entire group.

Users of several user-types (with different ODMs) can be added sequentially by re-
peated applying the Edit/ Module/ Add... process.

Note that during the start trip time-interval, all passengers in the ODM matrix will
start the trip. This means Pmn passengers will start the trip from stop with name SNm to
the stop with name SNn from time Start trip earliest to Start trip latest.

Note that you will not see any user on the display unless the simulation time passes
the time defined in Start trip earliest. Then users will start queuing up at the stop
of their origin.

2Please do avoid white-space within the stop names, is can cause mismatches when the stop-names in
the ODM file are compared with the stop names in the simulation file.

26

4.2 Scripting

Scripting is a powerful feature in order to automatize the process of an entire series of
simulations. The simulator itself is written in Python which is a object-oriented script
language. For this reason, it is straight forward to access most simulator internal variables
and functions via a script.

You would use scripts without graphical interface for large scale simulations because:

• it is many times faster (the fiera simulation about 5 times as fast).

• it requires less memory.

• you can run the simulation within a script or in the background.

• you can automatically create and save reports.

A full description on what can be done with scripts would result in a manual by itself.
Instead, there are some example scripts in the main directory that you can execute just as
the main program. Python is an extremely clean language and you are invited to use the
examples as a template which can copied and modified for your specific purposes. The
simplest script is called script users. It runs the simulation of the same transportation
network with different number of users. script odms is slightly more complicated as
it automatically simulates the same network with a different number of vehicles, using
different origin-to-destination matrices.

In order to view/modify the script, open it in a text editor (possibly with python
syntax highlighting, such as emacs). The MS-windows distribution of Python contains
already an appropriate editor called IDLE: Just right-click on the script file and select
edit with IDLE. With IDLE you can also run the scrip: select menu item Run / Module.

4.3 The command-line mode

With the command-line mode you can run a simulation without graphical interface and
animations. You will appreciate this simulation mode if you want to simulate a large
network with many vehicles and passengers because:

• it is many times faster (the fiera simulation about 5 times as fast).

• it requires less memory.

• you can run the simulation within a script or in the background.

• you can automatically create and save reports.

Assumed you have edited a network, added vehicles and users and saved the simulation
under mycity users.its. Now you want to run the simulation for 1h, save the simulation
afterward in file mycity 1h.its and a report of the results in file mycity 1h.txt. To do
all this with just one command: open a terminal (or DOS-prompt under windows) and
type:
python its.py -c -e3600 -o projects/mycity 1h.its -r projects/mycity 1h.txt

projects/mycity users.its

27

If no simulation time is given (-d or -e) option then the simulation internal times are
used as set in the menu Simulation / Parameters. If you do not trust what has happened
during the command-line simulation, you can always have a look at the result by opening
the output simulation file (hereprojects/mycity 1h.its) in the simulator.

Have also a look at other command-line options. For example with the -d combined
with the -f option, one can iteratively advance the simulation by a given amount of time
and save the output simulation file back into the input simulation file. In this example
the simulation mycity.its is advanced by 1 minute each time the following command
line is executed.
python its.py -c -d60 -f projects/mycity users.its

The currently available command-line options can be retrieved with the command line
python its.py -h.

Note: under MS-windows the command-line mode is painful because the standard
DOS-prompt shell is not very sophisticated. You also need to add the python.exe in the
application search path and you need to give the absolute path of the simulation and
output file. Recommendation: better use scripting under windows.

4.4 How to simulate failures

Here is how you can simulate the most important failure: a vehicle stops moving on the
track:

1. Open a complete simulation, including vehicles and users. You may also run the
simulation for a certain time to bring the network in a realistic state. Then stop
the simulation at the time when you want to simulate the vehicle breakdown.

2. Select Edit / ModulesControl-panel.

3. Click on a track-element, where you want to simulate the breakdown and select the
“Sections” tab.

4. Select a Section of the Sections table where you want to simulate the event: On
simple line or flexible line elements, there is just one section. On diverge elements,
the first section is the input-sections, the others are output. On a merge-element,
the first two elements are the input section, the last one is the output-section.

5. Click into the “Line speed” field and change it to zero, or a small value AND HIT
THE RETURN BOTTOM, otherwise the new value will not be effective. Click on
the Update-bottom to see if the new values have been registered. You can leave the
control-panel open for further interaction.

6. Continue the simulation and watch how the vehicles are slowing down on the selected
section.

7. After a certain simulation time (which is necessary to repair or remove the vehicle),
stop the simulation again and use the above described method to restore the line-
speed to its old value.

28

4.5 3D OpenGL monitor

This is only a very crude 3D visualizer, but it is in real-time. When sitting on a vehicle
one can get a kind of feeling for what would happen on a real ride. This applies only to
smaller networks (a few km) and only with a small number of users. Unfortunately, the
OpenGL monitor is currently not integrated in the main GUI as it requires a different
scheduler. You can double-click on its3d to see a demo test-track. However, to view your
own network is a bit more complex.

Here is the way to view your own network in 3D:

1. Edit a simulation in 2D as described in Sec. 3.3, including vehicles and users.

2. Save the simulation.

3. Right-click on the script file “its3d” in the main directory and select edit with

IDLE.

4. Look at the script file. After the Usage info you will find a section “DEFINE
DEFAULTS HERE”.

5. change the variable simfile_name to the filename of your simulation.

6. Use Run / Module or press F5 to start the scene. After saving your changes, you
can also quit and run the 3d monitor by a double-click on its3d, because now the
default simulation is your network.

Here is how to use the monitor:

Initially you will see the network from above in observer mode.

You have the following function-keys:

Key Function

r switch to observer external observer mode.

u sit on first vehicle

b move with first vehicle but below the guideway

s stop simulation

c continue simulation

Esc Quit application

The following navigation keys are only valid for observer mode.

8 move forward

2 move backward

6 move right

4 move left

9 move in

3 move out

To rotate around z and y axes: double-klick in 3D window and move mouse

while keeping left mouse-button pressed.

Tip: Use the Number-block on your key-board to navigate.

29

5 Principles of operation

The simulator as a whole is a complicated piece of software with many interacting ob-
jects. Even though details of the internal functions are hidden away behind a graphical
user interface, it may be required to have a minimum understanding of the simulator’s
operating principles.

The basic principle of the simulator is quite simple: a simulation consists of a set of
simulation objects. Each object contains:

• internal state variables.

• methods to change the internal state.

• methods to interact with other simulation objects.

For efficiency reasons some simulation objects handle and update all modules that are of
the same type3. Hence, these simulation objects contain additionally:

• modules, all of same type. Modules are similar to simulation objects as they contain

– internal states

– methods to to change its state, and to interact with its parent simulation object
and other modules.

• methods to interact with modules.

The methods to change the internal state of objects or modules are event-driven.
There are principally two types of events:

1. During the simulation is running (after Simulation / Start or Simulation / Continue
have been selected) the simulator calls cyclically the update method of each simu-
lation object (see Fig. 10).The update method may then call various methods with
parameters of other simulation objects and modules. The time step between two
cycles is determined by the sampling-time which can be set in Simulation / Param-
eters.

2. Object methods are asynchronously called through graphical user interfaces (dialog
boxes, control-panel etc.).

3. external calls of methods (parameter settings, etc.)

All (relevant) simulation objects and modules can be listed and inspected with the
object browser: Select Edit / Browse.... As it can be seen in the lists, simulation objects
as well as modules have unique identifications (IDs). The naming scheme for simulation
objects is:

family name . category . type name

The naming scheme for modules is composed of the parent simulation object ID plus
a serial number:

family name . category . type name / serial number

3this structure allows to use high speed numeric array operations

30

object

simulator module 1

module 2

module n

object
update

object

call for

Figure 10: Simplified functioning of simulator: Simulator calls the update method of
simulation objects. Some simulation objects contain a set of modules which are all of the
same type. Because modules of the same type have the same functionality, very efficiently
numeric- array oriented updates are possible.

5.1 Simulation objects, modules and their functions

This section gives an overview of the functions of simulation objects and modules and
their relation to other objects, see Figure 11.

order

control

control

logistic

logistic

order

order

transport

move

users

track-elements

carrierscarrier management

user management

track management

Figure 11: Simulation objects and their basic relations. Note that the users, carrier and
track-elements are container objects for several modules.

users make trips with the transportation system by giving trip orders with destination to
the user management and entering the carrier. There is currently just one user-type:
the test-driver, making one random trip after the other.

carriers (vehicles), transport users along the track. They receive orders from the carrier
management to let board a specific user. Carriers also control , together with the
current track-element, the distance to other carriers and so called “ghost carriers”
on parallel branches in conflict zones.

31

The vehicle-follower control algorithm is currently more optimized for simulation
speed rather than for precise/optimized motion control. This means the following
differences compared with a realistic control system: (i) there are no jerk-limits
(in neither direction); (ii) speed changes of the first vehicle in a vehicle chain is
almost instantly and fully propagated through the chain, which results in a reduced
ride comfort; Differences (i) and (ii) result in a slightly higher line capacity of the
simulated system compared with a real system.However additional time headway,
necessary for jerk adaptation and be simulated by increasing the brake actuation
time, which is one parameter of carriers.

Speed-limits, maximum comfort/emergency/safet acceleration are respected. All
parameters can be modified via Add multiple bottom or control-panels.

track-elements are capable of guiding carriers along a predefined path. The instructions
whether to diverge the carrier in a specific branch, to halt it or to load/unload it, are
obtained from the track-management and passed on to the carrier when it enters the
specific track element. The track-elements are organized in track clusters (currently
all the net is one cluster). Each track cluster is controlled by one track-management
and may contain one or more of the following track elements:

• lines, curves or flexible line that guide and control the carrier.

• diverges, where one line splits into multiple lines.

• merges, where multiple lines merge to one line.

• stops, where people or freight gets loaded or unloaded. Stops are also organizing
the halt position of carriers, and tell them where to load, to unload, to wait
and when to start again. The stop does all that, dependent on which berths
users are waiting.

user managements: provide a costumer friendly interface between user and the trans-
portation system (this interface is currently not visible). User managements receive
orders from the users and organizes carriers for this trip by giving orders to the
carrier management. User managements would be operated by service providers (in
the current version there is just one user managements).

carrier managements: handle the logistic control of a carrier fleet (in the current ver-
sion there is just one carrier management). They allocate a carrier from the carrier
fleet they control and give orders to the track management. They also optimize
the redistribution of empty vehicles. Carrier managements would be operated by
transport providers.

track managements: handle the logistic control of a track cluster (in the current ver-
sion there is just one cluster). Track managements receive orders from the carrier
managements on where to route the carriers. They estimate the path with the short-
est trip time from origin to destination and give branch and halt instructions to all
track-elements involved. Track managements would be operated by infrastructure
providers.

32

5.2 Logistics and tasks

All managements together (see Fig. 11) perform the logistics of the network by exchanging
information among each other, but also with the physical world (track-elements, carriers,
users).

Apart from standard administrative operations, the managements currently optimize
only the trip-time: They route the vehicle to its destinations on a path that has the
shortest expected trip-time. If a branch is blocked, the vehicle is deviated, which will
trigger a rerouting. Empty vehicles will be “intelligently” routes to the nearest stop with
a higher user-demand.

If there is are no passengers at a stop, empty vehicles are send into the network. An
empty vehicle is branched into a stop if there are waiting passengers at this moment.
There is currently no predictive resource allocation—not for vehicles and neither for the
network. This means traffic congestion can occur if the network has a bottleneck.

The organization of the entire logistic is based on the creation, exchange,and execution
of tasks: If a management wants to get a service performed by a target (another or the
same management or physical module), it must send an order. When the target receives
the order, it will create a task for this order. The task inside the target will create one
or several actions (or create orders for other managements and/or modules) which are
necessary to fulfill the task. The task persist in the target until it is terminated, failed or
explicitly killed. In either way the task will report the results to the entity which created
the order.

Tasks are the instrument to control the network globally on large time scales. They are
the bases for doing distributed, parallel computing in the system’s heterogeneous computer
network. Note that tasks are a inherent feature of most operating systems. The concept
of tasks used in the simulator has been designed to fulfill the special requirements of
the transportation network, including physical objects and a multi-level management. In
later versions the simulation objects (in particular the management objects) could run on
different processors, using the task mechanism of the respective operating system.

The task page of each control-panel shows task ID, status, the order ID and the
object/module which created. Modules have usually only one task at a time, management
units must handle many tasks simultaneously.

5.3 Local vehicle control

Before explaining the simulated system, a few words to the general PRT control-problem.
A controller for short time head-ways needs to meet simultaneously criteria for safety,
string stability, comfort and speed transitions.

The safety criteria can be expressed by means of the minimum safety distance dS
between vehicles that is required to avoid a collision between two consecutive vehicles. In
general, dS is proportional to the difference between the squared velocities of follower and
lead-vehicle. In many control schemes, the level of safety is given by the safety factor KS
when the actually achievable distance is KS · dS.

String stability means that a speed change of a vehicle in the string decreases in
magnitude when propagating through the following vehicles.

The comfort criteria sets usually limits to the maximum allowed manœver accelera-
tions and jerks.

33

Speed transitions do occur during various vehicle manœvers, such as approaching,
following, merging, diverging, stopping or velocity changes. It is obviously required to
guarantee all the above criteria during all possible speed transitions. One specific tran-
sition criteria is the “fixed end-point speed transition”(FEPST) criterion:all vehicles in
the string must be at the lower safe speed at a fixed point of the track, not just the first
vehicle.

The optimization criteria for lateral-controller is usually to maximize the line capacity
or to minimize head-ways. The theoretical limits of carrying capacity and safety-level are
generally set by the adopted vehicle spacing policy. The relevant policies are the constant
time headway policy and constant safety policy. Constant time headway offers a constant,
speed independent carrying capacity, while the safety factor drops below unity as velocity
increases. Constant safety spacing guarantees a KS ≥ 1. But for higher velocities, the
carrying capacity drops below the one of the constant time headway spacing.

Now we introduce the necessary parameters and math: If vehicle n − 1 has a maxi-
mum failure deceleration of aF and the following vehicle n can guarantee an emergency
deceleration of aE by applying the emergency brake after time TE then vehicle n is in a
safe state if dn(t) > dS(vn(t), vn−1(t)) with

dS(vn, vn−1) = TEvn +
1

2

(
v2

n

aE

− v2
n−1

aF

)
. (1)

Parameters aE, aF , TE, vehicle length ` and the nominal line velocity VL do ultimately
determine the line capacity C in vehicles per hour, with

C =
1

dS(VL,VL)+`

VL
+ TE

× 3600.

The nominal line velocity VL can be determined individually for each section of the
network at the ”Section Tab” of the control-panel of the corresponding track-element.
In the general case if aF < ∞ the plot of the line-capacity over the line-speed results in
a curve with zero capacity at VL = 0, zero capacity if VL →∞ and a maximum capacity
at

vopt =

√
2`

1
aE
− 1

aF

.

The comfort criteria is introduced by limiting the acceleration an(t) of each vehicle n
at the comfort acceleration aC . If we want to avoid collisions by braking only at at the
comfort rate we must respect the minimum comfort distance dC(·, ·) with

dC(vn, vn−1) = TEvn +
1

2aC

(
v2

n − v2
n−1

)
(2)

The simulator can do both, constant safety and constant time headway. In fact,
constant time headway is a special case of a constant safety, when aE = aF . The controller
of the simulator does simply guarantee that the distance is at all times and for all vehicles
grater than both, dS(vn, vn−1) and dC(vn, vn−1). If there is no vehicle in front, the vehicle
will accelerate to the given nominal line velocity, which is a property of the section of the
current track element.

34

Attention: at merge points you have to make sure that the legs of the merge element
are at least as long as dC(VL, VL), otherwise vehicle won’t have the chance to line up
properly and crashes may occur.

All accelerations and the brake actuation time should be modified during the “add
multiple” operation, when adding the carriers to the network. The parameters of individ-
ual vehicles can be modified through their control-panel.

The nominal line velocity can be modified for each section at the Sections-tab of the
control-panel of each track-element. Section 4.4 explains how to do this.

There is also the possibility to introduce a comfort jerk jC : simply add to the brake
actuation time the term 2aC

jC
. This will add enough time-headway so that the acceleration

can adapt at comfort jerk rate in the worst case scenario.

6 Bugs

At present, the software is not memory and speed optimized. Tip if you are short of
memory: After you have completed the network design, delete your background maps
with Edit/ Map/ Delete and safe this version under a different name. Then run the
simulation. The results will be the same, but your computer does not have to deal with
the memory of the maps. You can also much quicker zoom in and out without maps.

In any case, for larger networks it is recommended to run the simulation in command-
line mode or as a script, without graphical support. This will reduce the used memory
and make the simulations roughly 5 times faster, see Sec 4.3 and Sec 4.2.

Some “minor” problems have been discovered and will be improved in future versions:

• There may be problems with reloading already simulation files.Sometimes it cannot
be seen immediately, but during the simulation when various WARNING messages
do occur on the terminal.

Please keep always a copy of the unactivated track as backup. This will always work.
From there it is quick to reconstruct the simulation by adding different numbers of
vehicles and users.

• Vehicles crash into each other at a certain merge points. The reason why this can
happen is that there is no design rule checker. Most likely one of the branches of
your merge element is too short in order to allow vehicles to adapt their speed.

The only solution is to extend the input lines or to lower the line speed on the input
sections (and on previous section in order to guarantee that the vehicles enter the
merge at the desired speed.). In general one would set the same line-velocity for
both input sections of a merge element (first two sections on the Section page of the
control-panel).

• The deviation rate (number of deviation divided by the total number of switch
operation×100) on the track management control-panel can show 101% instead of
100%.

• It has been observed that vehicles stop inside stations and refuse to load passengers.
This can occurs if stations are over-congested. Try to avoid over-congested networks.
Add station or bypass or reduce the number of vehicles.

35

• Some error messages may occur after running and re-editing a simulation. But
this should be avoided in any case: edit only unactivated tracks, save the network,
activate it and then run the simulation.

• In some cases, a discontinuity can occur when connecting track elements. Usually
this happens when the connecting algorithms cannot straighten the angle between
both elements because it is too big.

Workaround: just move the track elements apart with Edit/ Module/ Move and re-
connect them. When still problems, try to change relative angle or position element
or position of nodes. Or use flexible elements instead of curve elements or lines. If
this still does not help it can be that you ask for a too small curve radius, which
would also be a problem of the real system: Consider a different network-layout.

• Some track elements show “strange” stretch properties when placed with certain
angles.

Workaround: move (Edit/ Module/ Move) and turn the track element slightly if
possible. When still problems, consider using alternative track elements.

7 Release notes for version its-0.51

Version its-0.51 :

• Empty vehicle management.

• Improved vehicle and boarding behavior for high capacity stops.

• Concept of user-profiles, see Sec. 4.1.

• Simple, real-time 3D OpenGL viewer (Requires PyOpenGL module installed), see
Sec. 4.1.

• More export tools (Station statistics, trip-time tables etc.)

• Various bug fixes.

Version 0.3:

• Vehicle follower control algorithm has been enhanced by brake actuation time (which
also allows to add extra inter-vehicle space for jerk adaptation).

• Improved boarding behavior for high capacity stops: if there is high demand, the
stop is switching to a so called “synchronous mode”, where the stop is divided in a
unloading and loading area.

• All user types have now a boarding and an exit time as parameters.

• The new “generic user” can be place automatically according to a predefined origin-
to-destination demand matrix.

• The new “generic user” has a trip start time. During the creation phase boarding
and an exit time as well as start time can be randomized by giving time intervals
as parameters.

36

• Simulator can run in command line mode, without graphical support. There are
various command line options to control the most important simulation parameters
and output/report file names.

• Scripting.

• Postscript snapshot tool: This tool can be “switched on” to make regular snapshots
of the canvas. The snapshots will be saved as files in Postscript(R) format.

8 Features for future releases

Not all of these features will come with the next release...

• Improved task and new resource classes for management objects.

• Predictive Stochastic Network Control (PSNC) for global traffic. optimization.

• Running the simulator in a shell. This gives the same access to the simulator as
within a scrip, but it is interactive.

• More sophisticated export tools (suggestions?).

• 3D OpenGL viewer and/or interface to renderer (most likely blender2.x).

• Improved vehicle follower control algorithm with explicit jerk simulation. More ride
comfort, better implementability.

• Extension to MAIT simulator: global net-management, multiple track and carrier
managements, multiple cabin managements.

• Import data of geographical data instead of bit maps (formats not yet decided,
suggestions??)

• Display of graphs with speed profiles etc.

• Printer support.

• Balloon help support.

• Improved graphical network editor with mark, copy/ paste, undo etc.

37

